Art. XIX.-T'eratological Notes; Purt 1.

By A. I). HARDY, F.L.S.
(Forests Department, Melbourne).

(With Plate XXIX.).
Read December 9th, 19157.

By means of this and other papers to follow, it is intended to place on record occurrences of interest to specialists in vegetable teratology which have come under my notice during the past few years. The present paper includes references to seedlings only, leaving to future parts notes on heterotaxy and morphological deviations in foliage, etc., of older plants, particularly with regard to some of our indigenous flora.

Abnormal Seedlings. ${ }^{1}$

Cotyledonary leaves, regarded as of diagnostic value by Ray at the end of the 17 th century, but not used by him in the genesis of the natural system of classification, were placed in commission, as it were, by Jussieu, in limiting the primary divisions of the angiosperms. Since then the cotyledons have been recognised with due regard for their importance in association with other characters, but occasionally-and in some cases frequently-polycotylous forms appear among normal contemporaries of the same species of dicotyledons; and other aberrations are not uncommon-at least in cultivated plants.

The most frequent abnormality noted by me was the polymerous whorl of cotyledons; the next, polyphylly (in the subsequent production of foliar leaves) ; the third in frequency was the cohesion of nembers of a cotyledonary whorl ; the fourth was the bifurcation of the axis of the cotyledon ; the fifth, fission or lobing of the cotyledon ; and, last, stem abnormalities--bifurcation of the seedling axis, and hypocotylous supplementary shoots, being rare within my experience.

The specimens have all been taken from cultivation, and, further, my inquiry, as far as the seedlings are concerned, has been spread over a field limited to three nurseries and a suburban garden and to one season only excepting one species- Coprosma lucida.

1 In "A contribution to our Kinowledge of Seedlings" (Avelnury) will be found a wealth of information as to normal plants, and a comprebensite biblion raphy.

Facilities were afforded me by the Conservator of Forests, Mr. H. Mackay ; the Director of the Melbourne Botanic Gardens, Mr. J. Cronin; and Messrs. Brumning and Son, to examine the seedling beds in the respective nurseries. The State Forests Nursery, established principally for the sowing and mursing of eucalypts, is at Broadford; the other plants were observed in my private garden at Kew. Nothing like an exhanstive search was made or attempted in the limited time available, and though many genera were noticed, the quest was made with the study of seedlings of Eucalyptus as the main object in riew.

Polycotyly.-In some species there appears to be a tendency to polycotyly, the deviation from normal conditions ending there; in others this tendency seems to have strengthened into a habit without subsequent growth of the plant being affected, while in a third phase the impulse given is continued into successive foliar organs in their arrangement relative to the axis. In frames containing some thousands of l'ittosporum migrescens, I failed to find a single dicotylous plant, although 3 -merous and t-merous forms were common, and 5 -merous seedlings were in the proportion of about 1-100.

The species of which I exhibited specimens with increased number of cotyledons are as follows :-

Cupressus macrocaripa	3-, 4-, 5-, and 7 -merous forms, frequent; 2-merous forms not seen
Creprosma ludica ${ }^{1}$	3-merous, in proportion of about 6:100
Eucalyptus Muelleriana	3 -merous, rare.
,, resinifcra	3 -merons, 1:500.
", ratiata -	3 -merons, about 1:100.
Risidoni -	3-merons, about 1:100.
., cormuta -	3 -merons, rare.
Dillwynia cinerascens	3 -merons, 1.22.
Ligustrum (chinensis?)	3-merous, 9:140.
Sterculia (sp.)	3-merous, 1:20.
Pittosporum tenuifolium	3-, 4- and 5-merons.
floribundum	3-merous 3:80.
,, Buchanianum	Only two ont of 17 in one lot were dicotylons, five were 3 -merously whorled, nine 4-merously and one 5 -merously.
,, migrescens	$3-, 4$ - and 5 -merous (see above).
, undulatum	Many 3-merous whorls seen.
Cytisus proliferns	3-merous, about 3:100.
Mandevillea (sp.) -	3-merons, numerous.
Gleditschia triacanthos	3 -merous abont 3:1000.
Callistemon lanceolatus	A few, not counted.

[^0]Angophora intermectia

Mugnoliu grandiftore
Clematis (sp.)
schinus molle - - 3-merous, 8:2000.
Acacia strictu - - 3-merons, 1:30.
Cytisus alba - - Account not kept.
Thujopsis boreatis - - 3-merous, 3:100.
Bursariu spinosa - - 3-meroms, a small percentage.

With few exceptions the whorls were characterised by radial symmetry, and this, taken with other characters such as renation, points to the numerical increase originating in corresponding superfluity of leaf primordia in the young seed rather than to early fission of the growing cotyledon.
l'olyph!yl!!.-Occasionally the whorl of cotrledons was found to be accompanied by a similarly increased whorl of foliar leaves, and in a few instances increase was repeated at successive nodes. Amongst 40 normal Linaria plants several had four whorls, including that of the cotyledons. The undermentioned species yielded forms with increase of foliar leares supervening on tricotyly.

Coprosma lucida.
Eucalypt us cladocaly.x.
E. resinifera.
E. Risdoni.

Linaria (Sp.).
Ligustrum chinensis.
Bifurcation of Aris.-This occurrence, known to some nurservmen as "double-heading." has an economic value at times in that a shrub or tree ordinarily too tall for some situations produces two opual branches near the ground, each heing stronger than a lateral branch.

1. Epicotylons forking of the stem was whserved in Cyfisus proliferus. This may have been caused by carly arrest of the normal shoot and consequent production of what might be termed cotylaxillary shoots, referred to later in connection with E'ucalyptus cormuta.
2. Supereotylons forking of the stem axis was seell in a specimen of Tilia Americann, the division being about three cma above the level of the cotyledons.
'ohkesion of C'otylchons.-It is assmmed that the presence of a "milrib" in cach lialf of an over-hroad cotyledonary member,
together with appropriate venation and a thickened petiole, indicate connation of two leaves by their inner margins, or that the fusion has been dhe to the cowding of primordial papillae. Thus the following species, in which the forenamed conditions were evident, may be listed as having afforded specimens:-
l'ittosporum temuifolium.

coprosma lucida.
schinus molle.
N'terentia (h!!lırida?).
 trilobed sed leares due to each leaf consisting of a fused pair.
I have not ohserved any but lateral cohesion of two members of polymerous whorls. Fusion of opposed members by their bases. thus giving a perfoliate appearance, may have existed among the many seedlings seen. This feature is less conspichons, howerer and if present was monoticed. The Sterculia had an asymmetric whorl composed of the two fused leaves and an aborted third.

S'terculia (hyluridla!): Amongst 24, whe with bifid leaf.
P'ittospor"um temifolium: One only with a bifid leaf.
l'. Burhanimum: One leaf of a trimerons whorl of cotyledons slightly biticl.
Dencus C'arota: One cotyledon bifid sliglitly. In another plant whe leaf bifid and the other mequally trificl. (fiuppry found 2: sut of $1: 3.5$ seenllings of Lepidnm. satien"m with tripartite cotyledons.)
Other Almormalitirs.-The only instance seen where axillary growths occurred in a very roung seedling was in the case of E'ucal!pptus cormuta, in which buds were present in both cotylar and foliar axils. The cotyledons were verticillate, and the foliar leares normal.
íhuria (purpurea?) cultivated at Kew showed a tendency to produce supernumerary shonts of loypocotylons origin (about 5 per cent.). When the plants had produced less than a fourth of their mature foliage. or earlier, they were fomd with a shoot developing near the ground, or sometimes hypogeal, and producing 3 -merous whorls of foliar leares. (Masters records a similar occurrence in L. inlgaris. Ana!alis arrensis, Einphorbia peplus and some mometliferac.)

Malposition of cotyledons owerred in Acacia stricta, the pair. instead of retaining an opposite position, being forced round by the vigorously growing, homiphikns shoot until they were to one side
of the axis, and almost laterally connate. This was noticed in 7 of the 19 plants examined.

In the case of Pittosporum tennifolium, the arrangement of the five cotyledons before expansion was noted. They were curled up within the seed, like straps rolled with flat surfaces in contact, but, as shown in the drawing, there was provision for radially symmetric growth after expansion; the onter leaves being slightly shorter than the inner, with petioles twisted obliquely in order to have the blades in mutnal contact. The members, after artificial withdrawal from the seed coat, separated with a knife and immersed in water. soon assmmed an approach to the radial form. This ohservation makes less tenable the fission theory of maltiplication of linear cotyledonary leaves. (Sce Figs. 2:3 and 24 a, b.)

The many instances of seedling abmomalities given above, and a review of records by Avebury (Lubbock), Mueller, Masters, Guppy, Duchartre, Bailey, Schrenk, ete. (their observations affecting cultivated plants chiefly), leads one to think that there is ground for further interesting inquiry among the scedlings of native plants in their habitats. F. V. Mueller's ${ }^{1}$ investigation, in 1882, of polycotyly in New Zealand species of the gemus l'ersomia, resulted in the surprising record of there being amongst 23 species examined only four with dicotylous seedlings; and, he wrote: " It may le fairly assmmed that in the gemus as a whole the pluricotyledonary embryo by far preponderates." This fact adds interest to the data given for Pittospormm nigrescens mentioned above, and perhaps to observations on other species such as P. temufolimm and P. mudulatum.

EXPLANATION OF PLATE.

Figs. 1 to 5 -Coprosma lucida.
,, 6 and 7 - Eucalyptus raliat:.
, 8, 9 and $10-\mathrm{E}$. Risdoni.
„ 11 and 12-Dillwynia cinerascens.
, 13 and 14-Acacia stricta.
" 15 to 18 -Pittosporum Buchanianum
" 19 - P. tenuifolimm.
" 20 -P. Buchanianum.
, 21 and $22-$ Daucus carota.
" 23 and 24 -Pittospormm tenuifolimm.
, 2.) -Linaria (purpurea?
" 26 - Nucalyptus cormuta.
Note.-All figures semi-rliagrammatic.

[^0]: 1 Result of observation during 3 seasons of seedlings of the same tree.

